520-31 116642 P.9 NC99967

THE GODDARD SPACE FLIGHT CENTER MECHANICAL COOLER PROGRAM

APRIL 29, 1987

PRESENTED BY DR. STEPHEN H. CASTLES

OUTLINE

- O NASA PROGRAMS REQUIRING LONG LIFETIME COOLER
- o PHILIPS COOLER PROGRAM
 - HISTORY OF PROGRAM
 - TECHNOLOGICAL DEVELOPMENTS
 - STATUS
- o CREARE COOLER PROGRAM
 - HISTORY OF PROGRAM
 - TECHNOLOGICAL DEVELOPMENTS
 - STATUS

40 K - 120 K (SINGLE STAGE COOLERS)

REQUIREMENTS (AND ILLUSTRATIVE EXAMPLES)

- o COOLING SENSORS
 - ADVANCED X-RAY ASTROPHYSICS INSTRUMENT
 - MODERATE RESOLUTION IMAGING SCANNER ON EARTH OBSERVING SYSTEM (EOS)
 - HIGH RESOLUTION IMAGING INFRARED SPECTROMETER ON EOS
 - 2 SECOND GENERATION SPACE TELESCOPE INSTRUMENTS (SOLID METHANE/AMMONIA COOLERS OR LONG LIFETIME MECHANICAL COOLERS)
- o LONG TERM STORAGE OF LIQUID HELIUM
 - ADVANCED X-RAY ASTROPHYSICS FACILITY INSTRUMENT
 - ASTROMAG
 - CRYOGENIC INTERFEROMETER SPECTROMETER ON EOS (TBD)

HISTORY OF LONG-LIFE STIRLING COOLER

- o PRELIMINARY STUDY COMPLETE 1979
- o ENGINEERING MODEL MET DESIGN SPECIFICATION MARCH 29, 1982
- ENGINEERING MODEL PASSES TWO YEARS RUN TIME WITH NO DEGRADATION - AUGUST, 1985
- o PROTOTYPE CONTRACT BEGINS SEPTEMBER, 1981
- o AIR FORCE FUNDING BEGINS DECEMBER, 1984
- o PROTOTYPE COOLER DELIVERABLE DECEMBER, 1987

SINGLE EXPANSION CRYOGENIC COOLER WITH LINEAR MAGNETIC SUSPENSION

ORIGINAL PAGE IS OF POOR QUALITY

PROTOFLIGHT COOLER MAJOR TECHNOLOGICAL FEATURES

- o MAGNETIC BEARINGS FOR LONG LIFE
- o RADIAL POSITION SENSORS WITH LOW DRIFT
- o AXIAL POSITION SENSORS WITH HIGHER FREQUENCY RESPONSE
- O LOWER DISPLACER POWER MAGNETIC SPRINGS
- O HIGH EFFICIENCY DRIVERS FOR LINEAR MOTORS
- o COMPACT LONG LIFE ACTIVE COUNTERBALANCE GAS SPRINGS
- o COATED INTERNAL SURFACES FOR SECONDARY BEARINGS
- o LOW FREQUENCY VIBRATION ISOLATION MOUNT

ADVANTAGES OF PHILIPS COOLER

- o ENGINEERING MODEL HAS DEMONSTRATED LONG-LIFETIME, RELIABLE OPERATION
- o EFFICIENT
- o LOW VIBRATION (ACTIVE BALANCER)

REFRIGERATUR MECHANICAL RELIABILITY PRELIMINARY

MISSIUN	FAILURE RAIL*	RELIABILITY
3 YEARS	29105	•99238
4 YEARS	.29105	•98985

^{*}FAILURE RATE PER MILLION HOURS OF OPERATION

""BASED ON: MILITARY HOBK-217D
MIL STANDARD 756B: "MILITARY STANDARD, RELIABILITY PREDICTION"
U.S. ARMY REDSTONE ARSONAL STORAGE REPORT LC-78-1: "MISSILE MATERIAL RELIABILITY
PREDICTION HANDBOOK"
RUME AIR DEVELOPMENT CENTER REPORT MPRD-2: "NONE-ELECTRONIC RELIABILITY PARTS RELIABILITY
DATA"
GIDEP: GOVERNMENT/INDUSTRY DATA EXCHANGE PROGRAM-SUMMARY OF FAILURE RATE DATA

STATUS OF PROTOFLIGHT DEVELOPMENT

- o DESIGN COMPLETE
- o FABRICATION AND TEST OF SAMPLE CRITICAL SUBASSEMBLIES IS COMPLETE
 - RADIAL BEARINGS
 - LVDT
 - LINEAR MOTORS
- O ROUGH MACHINING OF HOUSING IS NEARING COMPLETION
- o FABRICATION AND ASSEMBLY COMPLETE BY 12/30/87

SUMMARY OF PHILIPS PROGRAM

- O PHILIPS COOLER IS BASELINED FOR FLIGHT ON THE X-RAY SPECTROMETER INSTRUMENT ON THE ADVANCED X-RAY ASTROPHYSICS FACILITY
- O PROTOTYPE COOLER IS 75% COMPLETE.
- O MEETING NASA'S SCIENTIFIC GOALS IN BOTH EARTH SCIENCES AND ASTROPHYSICS IS DEPENDENT ON THE AVAILABILITY OF A RELIABLE MECHANICAL COOLER

\$6 CREARE, INC.

NASA/GODDARD SPACEBORNE CRYOCOOLER

MAJOR TECHNOLOGICAL FEATURES

- o MINIATURE CENTRIFUGAL COMPRESSOR
 - 600,000 RPM
 - .218 INCH DIAMETER SHAFT
 - .656 INCH DIAMETER IMPELLER (DOUBLE SIDED)
 - SELF ACTING GAS JOURNAL BEARINGS (TILTED PAD TYPE)
 - MAGNETIC THRUST BEARINGS (PERMANENT MAGNETS)
- o MINIATURE TURBOEXPANDER
 - 500.000 RPM
 - .125 INCH DIAMETER SHAFT
 - SELF ACTING GAS JOURNAL BEARINGS (TILTED PAD TYPE)
 - PRESSURIZED GAS THRUST BEARING
- O ALL METAL COUNTERFLOW HEAT EXCHANGER (SLOTTED COPPER PLATES)
 - 0.985 PREDICTED EFFECTIVENESS

POTENTIAL ADVANTAGES OF THE CREARE REVERSE BRAYTON CYCLE COOLER

- o LOW VIBRATION (SELF BALANCING)
 - ACTIVE BALANCING NOT REQUIRED
- o SIMPLE CONTROL ELECTRONICS (PRIMARILY HIGH FREQUENCY INVERTER)
 - ELECTRONICS MORE RELIABLE
 - COST. WEIGHT AND POWER SAVINGS
- O MINIATURE MOVING PARTS DO NOT REQUIRE A LAUNCH LOCK
- o INTERFACE WITH OBJECT TO BE COOLED IS RELATIVELY SIMPLE BECAUSE OF LOW VIBRATION
- o LOW SYSTEM WEIGHT AND SIZE
- o FLEXIBILITY IN PACKAGING OF COMPONENTS

HISTORY OF GODDARD'S FUNDING OF CREARE

o TECHNOLOGY DEMONSTATION MODEL REVERSE BRAYTON CYCLE COOLER

- DESIGN

12/84 TO 6/85

- FAB & TEST

4/86 TO 4/88

O ALL-METAL COMPACT HEAT EXCHANGER

- DESIGN

2/86 TO 8/86

- FAB & TEST

5/87 TO 5/89

SUMMARY

- o THE PHILIPS STIRLING COOLER PROGRAM WILL ENSURE THAT A COOLER IS AVAILABLE TO MEET NASA'S NEEDS IN THE 40 TO 120K TEMPERATURE RANGE IN THE EARLY 1990'S
- o THE CREARE TURBOMACHINERY BASED COOLER MAY PROVIDE AN IMPROVED COOLER FOR THE 40 TO 120K RANGE
- o DESIGN OF ADVANCED MULTISTAGE COOLERS FOR USE DOWN TO 2 KELVIN WILL BEGIN IN 1988
 - NEW LOW TEMPERATURE REGENERATOR CONCEPTS WILL BE EXPLORED

SPEAKER: STEPHEN H. CASTLES/GODDARD SPACE FLIGHT CENTER

John R. Schuster/General Dynamics Space Systems:

What is the status of the development work that was being done on a two stage Stirling machine?

Castles:

The two-stage Stirling machine is being produced by Magnavox Space Division, which is also a division of North American Phillips, and, as far as I know, the Air Force has completely ceased funding that program; it is at a total standstill. The machine was fairly well along; most of the hardware was complete, but as far as I know it is sitting at this time. That machine incorporated essentially the same technology that we had in our engineering model.